Spatial organization of receptive fields in the auditory midbrain of awake mouse.
نویسندگان
چکیده
Efficient encoding of sensory information can be implemented by heterogeneous response properties of neurons within sensory pathways. In the auditory system, neurons in the main auditory midbrain nucleus, the inferior colliculus (IC), show heterogeneous response properties to various types of acoustic stimuli including behaviorally relevant sounds. The receptive fields of these neurons, and their spatial organization, may reveal mechanisms that underlie response heterogeneity in the IC. The mouse is becoming an increasingly popular system for auditory studies and although some studies have examined spectral characteristics in the IC, most of these have been conducted in anesthetized animals. There were two goals of this study. The first goal was to examine the frequency representation of awake mouse IC in fine spatial resolution. The second goal was to determine whether there is a spatial organization of excitatory frequency tuning curves in the IC of awake mice. We achieved these goals by histologically reconstructing locations of single and multiunit recordings throughout the IC in a mouse strain with normal hearing (CBA/CaJ). We found that the tonotopic progression is discontinuous in mouse IC, and we found that there is no clear spatial organization of frequency tuning curve types. Rather, there is heterogeneity of receptive fields in the bulk of the IC such that frequency tuning characteristics and hence the structure of excitatory and inhibitory inputs does not depend on location in the IC. This heterogeneity likely provides a mechanism for efficient encoding of auditory stimuli throughout the extent of the mouse IC.
منابع مشابه
Auditory spatial tuning at the crossroads of the midbrain and forebrain.
The barn owl's midbrain and forebrain contain neurons tuned to sound direction. The spatial receptive fields of these neurons result from sensitivity to combinations of interaural time (ITD) and level (ILD) differences over a broad frequency range. While a map of auditory space has been described in the midbrain, no similar topographic representation has been found in the forebrain. The first n...
متن کاملFrequency-specific adaptation and its underlying circuit model in the auditory midbrain
Receptive fields of sensory neurons are considered to be dynamic and depend on the stimulus history. In the auditory system, evidence of dynamic frequency-receptive fields has been found following stimulus-specific adaptation (SSA). However, the underlying mechanism and circuitry of SSA have not been fully elucidated. Here, we studied how frequency-receptive fields of neurons in rat inferior co...
متن کاملSpectrotemporal Response Properties of Core Auditory Cortex Neurons in Awake Monkey
So far, most studies of core auditory cortex (AC) have characterized the spectral and temporal tuning properties of cells in non-awake, anesthetized preparations. As experiments in awake animals are scarce, we here used dynamic spectral-temporal broadband ripples to study the properties of the spectrotemporal receptive fields (STRFs) of AC cells in awake monkeys. We show that AC neurons were ty...
متن کاملOnline stimulus optimization rapidly reveals multidimensional selectivity in auditory cortical neurons.
Neurons in sensory brain regions shape our perception of the surrounding environment through two parallel operations: decomposition and integration. For example, auditory neurons decompose sounds by separately encoding their frequency, temporal modulation, intensity, and spatial location. Neurons also integrate across these various features to support a unified perceptual gestalt of an auditory...
متن کاملModulation of the receptive fields of midbrain neurons elicited by thalamic electrical stimulation through corticofugal feedback.
The ascending and descending projections of the central auditory system form multiple tonotopic loops. This study specifically examines the tonotopic pathway from the auditory thalamus to the auditory cortex and then to the auditory midbrain in mice. We observed the changes of receptive fields in the central nucleus of the inferior colliculus of the midbrain evoked by focal electrical stimulati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuroscience
دوره 193 شماره
صفحات -
تاریخ انتشار 2011